Comments on the US EPA "Review of Coliphages as Possible Indicators of Fecal Contamination for Ambient Water Quality"

Prepared for the National Association of Clean Water Agencies (NACWA)

Samuel Dorevitch, MD, MPH

University of Illinois at Chicago School of Public Health

February 15, 2016

Executive Summary

Millions of people each year enjoy using beaches, lakes, and rivers for recreation. Diseasecausing microbes – pathogens – found in surface waters can present a threat to public health, particularly as a cause of gastrointestinal illness. Viral pathogens have been difficult, costly, and time-consuming to measure in surface waters. In order to address the challenges of 1) estimating the likelihood of pathogen presence and pathogen concentration in surface waters, and 2) estimating the health risks of surface water recreation, "indicators" have been monitored in surface waters as an alternative to pathogens. For decades, fecal indicator bacteria, such as *E. coli* and enterococci bacteria have been monitored in surface waters to satisfy a variety of Clean Water Act requirements.

Coliphage viruses – viruses that infect *E. coli* bacteria – have been evaluated as indicators of wastewater treatment efficacy, human fecal pollution of surface waters, pathogenic virus presence in surface waters, and human health risk. In April, 2015, the US EPA Office of Water published a review of coliphage virus as a potential indicator of pathogens in surface wasters. That publication, "Review of Coliphages as Possible Indicators of Fecal Contamination for Ambient Water Quality," included reviews of research studies that evaluated coliphage measurements as predictors of health risks of water recreation and pathogen presence. The present document, prepared for the National Association of Clean Water Agencies (NACWA), provides information from research papers that were not included in the EPA review as well as additional information from papers that were included in the EPA review. The "charge" questions of NACWA are listed on page 7 of this document, address relationships between coliphage and viral pathogens in recreational waters, and coliphage as a predictor of illness among people who use recreational surface waters for recreation.

Key findings of this review of studies that evaluated coliphages as predictor of viral pathogen presence in surface waters are:

- The methods used to concentrate and test water samples for viral pathogens varied substantially across studies, in part because such methods have changed over the past 20 years.
- The statistical methods used to analyze associations between coliphages and viral pathogens were often incompletely described, and some studies did not seem optimal for the types of data that were collected.
- None of the studies reviewed described crucial performance characteristics of coliphages as predictors of pathogen presence, namely the sensitivity, specificity, positive predictive value and negative predictive value of coliphages.
- Findings of the coliphage and viral pathogen literature reviewed demonstrated inverse associations (high coliphage concentrations makes pathogen absence more likely), direct associations (high coliphage concentrations makes pathogen presence more likely), and in many cases, no association.

• These conflicting results may be due in part to the variability in laboratory and data analysis methods across studies, the relatively few water samples analyzed in many studies, and the differing proximity to a variety of fecal pollution sources across studies.

Key findings of this review of studies that evaluated coliphages as predictor of illness among water recreators are:

- The available scientific literature regarding coliphages and health risks of water recreation eight published studies is quite limited.
- The epidemiologic studies that evaluated coliphages arrived at conflicting conclusions about the predictive value of these viruses as predictors of health risk following surface water recreation.
- Relatively few swimmers have been enrolled into studies of coliphages as predictors of health risk compared to the number of swimmers enrolled into EPA's epidemiologic studies that have been used to develop water quality criteria and/or beach action values.

Regarding both potential uses of coliphages (as a surrogate for infectious enteric viral pathogens and as a predictor of the risk of illness among water recreators):

- A substantial amount of additional research is needed before coliphage testing could be recommended with confidence in surface water monitoring frameworks.
- In order to characterize coliphage concentrations as predictors of the presence or concentration of infectious viral pathogens, multi-site studies of sufficient size are needed. The waters sampled would have varying fecal pollutant sources and different hydrologic characteristics. Protocols for coliphage and infectious viral pathogen testing would optimized and then performed in a variety of laboratories. Basic performance characteristics of sensitivity, specificity, positive predictive value, negative predictive value, measures of association such as the increase in probability of detecting infectious viral pathogens for a given change in coliphage concentration.
- Additional and larger epidemiologic studies conducted in fresh and marine waters, settings would be needed in order to evaluate the predictive value of coliphage testing and whether such testing adds to the predictive value of information generated through the monitoring of fecal indicator bacteria.

Table of Contents

Contents

Executive Summary2
List of abbreviations5
Background6
Level One: Overall summary8
Level Two: Brief summaries of studies of coliphage and viral pathogens in surface water12
Not included in this review16
Level Three: Coliphage and viral pathogen literature summary
Coliphages as indicators of health risk
Level One: Overall summary of coliphage and health risk
Level Two: Coliphage and health risk literature details
Comparison of studies used to develop recreational water quality criteria and in the review of coliphages
Viral pathogens as predictors of illness in epidemiologic studies47
Conclusions
References

List of abbreviations

BGM cell culture	Buffalo green monkey kidney cell culture
CFU	colony forming unit
CLAT	F+ coliphage detection
CLAT	coliphage latex-agglutination test
Ct	cycle threshold
FIB	fecal indicator bacteria
GI	Gastrointestinal
GM	geometric mean
HCGI-1	Highly credible gastrointestinal illness, definition 1
ICC n-PCR	integrated cell culture with nested PCR detection
MPN	most probable number
NACWA	National Association of Clean Water Agencies
NEEAR	National Epidemiological and Environmental Assessment of Recreational
NOAEL	no observed adverse effect level
OR	odds ratio
PDU	PCR-detectable units
PFU	plaque forming unit
POTWs	publicly owned treatment works
qPCR	quantitative polymerase chain reaction
RNA	ribonucleic acid
ROC	receiver operating characteristic
RR	relative risk
RT-PCR	real time PCR, reverse transcription PCR
SC	somatic coliphage
TCV-MPN	Total culturable virus most probable number
US EPA	US Environmental Protection Agency
WERF	Water Environment Research Foundation
WQ	water quality

Background

In the US dozens of outbreaks of disease linked to recreation at lakes and rivers occur annually [1-3]. Bacteria, viruses, and protozoa have been identified as etiologic agents responsible for these recognized outbreaks. Outside of the context of outbreaks, sporadic cases of illness attributable to water recreation occur with some frequency at US surface waters – approximately 15-25 per 1,000 water recreators [4-6]. The etiologic agents responsible for these sporadic cases of illnesses have not been identified by epidemiologic investigations [7, 8].

In order to protect the health of the public, the US Environmental Protection Agency (EPA) has conducted epidemiologic studies of water recreation, in which participants are enrolled at beaches, beach water is tested for microbes, and water quality is used to predict risk of illness among swimmers. Based on such studies, EPA has developed "criteria" that describe microbes to be measured, the frequency for measuring those microbes, and the values of those microbes that indicate an elevated health risk. Based on studies conducted in the late 1970s and early 1980s, in 1986 EPA published criteria values for freshwater beaches (*E. coli* and enterococci measured by culture) and marine beaches (enterococci measured by culture) [9]. Based on epidemiologic studies conducted in the past decade, EPA published updated Criteria [10]. Those Criteria, while similar in many ways to 1986 Criteria, described a method, the quantitative polymerase chain reaction (qPCR), for evaluating water quality that generates same-day results, which can be useful for timely public notification of water quality Criteria are also used for a variety of other Clean Water Act purposes. These include the establishment of "Total Maximum Daily Loads" and the designation of water bodies as "impaired."

Several epidemiologic studies in the past 25 years have evaluated coliphage viruses – viruses that infect *E. coli* bacteria – as a predictor of health risk among swimmers. Many more studies evaluated coliphages as predictors of viral pathogen presence or concentration in surface waters. In 2015 the EPA Office of Water published a review of the environmental health literature to evaluate "... the potential for coliphages to be useful as viral indicators of fecal contamination." Findings of the literature summary and critique were published as "Review of Coliphages as Possible Indicators of Fecal Contamination for Ambient Water Quality" [11], which is referred to in the present report as "the EPA review."

To complement findings of the EPA review, the National Association of Clean Water Agencies (NAWCA) sought to further characterize associations between 1) coliphage and health outcomes following surface water recreation, and 2) coliphages and viral pathogens in surface waters. This report summarizes a review of studies cited in EPA's coliphage review, as well as additional relevant studies, some of which were published after the EPA Review was written. This review is funded by the National Association of Clean Water Agencies (NACWA) and the Water Environment Research Foundation (WERF) to address the following questions:

- Is there a relationship between male specific and/or somatic coliphage with enteric viruses in recreational waters? If so, what is that relationship (presence/absence, dose- response, etc.)? Recreational waters are those designated for this specific use in state or federal water quality standards regulations. For example, a storm water channel is not normally designated for recreational use, but a lake with a beach would be designated for this use.
- 2. Is there a relationship between male specific and/or somatic coliphage with human health in recreational waters? If so, what is that relationship?
- 3. Is there a relationship between enteric viruses and human health in recreational waters? If so, what is that relationship?
- 4. Do any of these papers link coliphage or viruses originating from wastewater that is discharged by centralized facilities to human health? If so, what is the nature of this link and what are the circumstances characterizing the link?
- 5. Are there other recreational water studies not referenced by EPA that evaluate each of the relationships above and meet current conventional standards for epidemiological study? Do these studies change the response to the questions above, and if so, how and why?

Efforts to answer questions 2-5 (which all address human health outcomes) were considered together.

Terminology used in the coliphage and environmental health literature varies. In order to avoid confusion in comparing studies, some terms used in this review differed from terms used in the original studies. Some studies use the abbreviation RT-PCR to refer to "real time PCR" while others use it to mean 'reverse transcription PCR.' To avoid that confusion, the abbreviation RT-PCR is not used in this report, even if it had been used in the studies reviewed. Reverse transcription PCR that is used in presence/absence tests of RNA viruses is referred to as "endpoint PCR" here. The term "qPCR" (quantitative PCR) is used here rather than "real-time PCR." In this report coliphages are referred to as F+ coliphage (rather than "male-specific") or somatic coliphage (rather than "F-coliphage" or "F minus coliphage"). Measures of microbes per volume of water are referred to as "concentration" even if the original study used the term "density."

Relationship between coliphages and enteric viral pathogens in surface waters

In order to answer charge question 1 (relationship between coliphage and enteric viruses), a total of 19 publications were reviewed, including several which were not included in the EPA review (in some cases because they were published after the review was conducted). The primary literature (rather than review articles) was summarized in three ways. A "10,000 foot view," a general summary of major elements of the design and findings of studies is found in Level One: Overall summary. More information about major elements of individual studies are described in Level Two: Brief summaries of studies of coliphage and viral pathogens in surface water, while additional details of study methods and findings are provided in Level Three: Coliphage and viral pathogen literature summary.

Level One: Overall summary

The studies summarized in Table 1 varied substantially in terms of study objectives, as some sought primarily to address questions regarding seasonal variability in microbe concentrations or viral persistence in surface waters, rather than the associations between coliphages and viral pathogens. In such cases, few details were provided that would be of primary interest to this review. Other sources of variability among studies include the number of water samples analyzed, water sampling methods, virus concentration methods, limits of detection and quantification, virus detection methods, and data analysis methods. Importantly, testing water samples for enteric viruses using culture methods (alone or followed by PCR), can identify infectious viruses. Methods that use PCR only do not differentiate between infectious viruses and non-viable viruses (or viral nucleic acids [DNA or RNA] that cannot by themselves cause infection). For that reason, inferences regarding health risk should be drawn with caution from studies of coliphage-pathogen association that do not use enteric viral pathogen culture methods.

Statistical methods for testing hypotheses regarding associations between coliphages and viral pathogens were not well described in several studies, and in others, did not seem optimal for the types of data (presence/absence, ordinal categories, or measured concentrations) or the distributions (normal, log-normal, non-normal) of the data. It is fair to say that the authors of the primary research studies did not have this review in mind when they designed, conducted, and described their study results. Ideally, studies that characterize associations between viral pathogens presence and a continuous measure of coliphages would describe results of logistic regression models or receiver operator characteristics, but only one study [12] did that. The use of categories of coliphage values (above vs. below a threshold value or even presence/absence) to predict viral pathogen presence would note the rates of true positives (coliphage above a threshold concentration value, viral pathogen present), false positives (coliphage above that threshold, viral pathogen absent), true negatives (coliphage below a threshold value, viral pathogen not detected), and false negatives (coliphage below a threshold value, viral pathogen present). With such information, the coliphage method could be evaluated in terms of sensitivity, specificity, positive predictive value, and negative predictive value. None of the studies reported this basic set of characteristics of a screening test. The degree to which coliphage and viral pathogen data agree with one another could be described in other ways, such as

odds ratios, goodness of fit, and correlation coefficients, but few studies provided this type of information. Others simply noted p-values, indicating that the relationship between coliphage and viral pathogen data is unlikely due to chance, without providing correlation coefficients (and their confidence intervals) or other pieces of information that describe the relationship.

As summarized in Table 1, studies generated conflicting results as to whether statistically significant associations are found in surface waters. Some studies found no association, others found strong associations, and several reported inverse associations (viral pathogen detection is more likely with decreasing coliphage concentration). Several studies that evaluated more than one viral pathogen found associations between one pathogen and coliphage, but not with others. A total of three large studies listed in Table 1 utilized enteric viral pathogen culture methods to determine viral pathogen presence or concentration. Of these, only one identified culturable viral pathogens in water samples, and that one did find statistically significant associations between coliphages and some viral pathogens [13].

In summary, it appears that coliphages may have value as predictors of waterborne enteric viral pathogens. However, the studies, which were generally small and provided limited methodologic information about data analysis, generated contradictory results. Studies are needed to characterize the sensitivity, specificity, predictive value, and threshold values of coliphage that suggest the likely presence of infectious viral pathogens. Such studies would ideally be conducted collaboratively at multiple laboratories to promote consistency and optimization of methods, as was done in the development of the qPCR method for water quality monitoring. Ideally, such studies would use methods with low detection limits for infectious enteric viruses. The information currently available is presently insufficient to recommend with confidence the use coliphage as a surrogate for infectious enteric virus testing or for routine water quality monitoring.

			Pathogen		
	14/	Church	analyzed		
Cturdu.	Wastewater	Study size*	by	Indicators of prodictors of vival not	
Study	impacted?		culture?	Indicators as predictors of viral path	1
Griffin, 1999 [14]	Septic systems	Small	No	SC and several viral pathogens	No
Jiang, 2001 [15]	Not described	Small	No	F+ coliphage and adenovirus	Yes
				FIB and adenovirus	No
Hot, 2003 [16]	Not directly	Medium	Yes	SC and culturable enterovirus	No
			No	SC and enterovirus RNA	No
Jiang, 2004 [17]	Yes (disinfected)	Small	No	SC and several viruses	No
	,			FIB and viruses	No
Skraber, 2004 [18]	Yes	Large	Yes	No enterovirus cultured	-
			No	SC and enteric virus	Yes
				FIB and enteric virus	Yes
Ballester, 2005 [19]	Yes	Large	Yes	SC and enteric virus, adenovirus	Yes
				SC and enterovirus, rotavirus	No
				F+ and enteric virus, rotavirus	Yes
				adenovirus	
				F+ and astrovirus	No
				FIB and virus: no FIB quantifiable	-
Choi 2005 [20]	Some sites	Large	Yes	Adenovirus: all cultures negative	-
			No	F+, SC and adenovirus, enterovirus	No
			No	FIB and adenovirus, enterovirus	No
Moce´-Llivina, 2005 [21]	Yes	Small	Yes	SC and enterovirus	Yes
		Small	Yes	FIB and enterovirus	Yes
Jiang, 2007 [22]	No	Large	No	F+ and enterovirus, adenovirus	No
				FIB and enterovirus, adenovirus	No
Boehm, 2009 [23]	No	Medium	No	SC, F+ and enterovirus	No
-				FIB and enterovirus	Inverse

(This table is continued on the following page)

SC: Somatic coliphage; F+: F+ coliphage; FIB: one or more fecal indicator bacteria, such as fecal coliforms, *E. coli*, or enterococci

*Study size defined by number of samples tested for both coliphage and viral pathogens: Small, <25 samples; medium, 25-74 samples; large ≥75

Study	Wastewater impacted?	Study size*	Pathogen analyzed by culture?	Indicators as predictors of viral pat	hogen(s)
Espinosa, 2009 [24]	No	Large	No	Coliphage and adenovirus	No
				Coliphage and enterovirus	Yes
				Coliphage and astrovirus	No
Jurzik, 2010 [25]	Yes	Large	No	SC and adenovirus, norovirus, rotavirus	No
Lodder, 2010 [26]	Yes	Medium ^a	Yes	F+, SC and enterovirus, reovirus	Yes
			No	F+, SC and norovirus, rotavirus	No
Haramoto, 2011 [27]	No	Small	No	F+ and viral, protozoan pathogens	No
				FIB and viral, protozoan pathogens	Yes
Viau, 2011 [28]	No point source	Large	No	F+, SC and adenovirus, norovirus, enterovirus	No
				FIB and norovirus, adenovirus	Inverse
Love, 2014 [29]: Avalon beach	No point source	Large	No	F+ and adenovirus	No
				FIB and adenovirus	Yes
Love, 2014 [29]: Doheny beach	No point source	Large	No	F+ and adenovirus	Inverse
				F+, SC and norovirus	No
				SC and adenovirus	No
				FIB and adenovirus	Inverse
				FIB and norovirus	No
Rezaeinejad, 2014 [30]	No	Medium	No	F+, SC and norovirus	Yes
Liang, 2015 [31]	No	Large	No	F+, SC and norovirus, adenovirus	No
				FIB and norovirus, adenovirus	Yes
Updyke, 2015 [32]	Some sites	Medium	Enterovirus: yes, if PCR +	F+ RNA coliphage and enteric virus	No
				FIB and enteric viruses	No

Table 1 (continued) Summary of findings of studies that address coliphage-viral pathogen associations in surface waters

(This table is continued from the preceding page)

SC: Somatic coliphage; F+: F+ coliphage; FIB: one or more fecal indicator bacteria, such as fecal coliforms, *E. coli*, or enterococci

*Study size defined by number of samples tested for both coliphage and viral pathogens: Small, <25 samples; medium, 25-74 samples; large ≥75

^aAlthough 75 samples were collected, only 69 were analyzed for all viral pathogens.

Level Two: Brief summaries of studies of coliphage and viral pathogens in surface water

Griffin, 1999 (not included in EPA review, Table 8)

In this study, 17 water samples were collected in the Florida Keys canals and two samples were collected from beach sites. Nearly all canal sites were near homes that used a septic system. Samples were analyzed by PCR (not culture) for enteroviruses, as well as hepatitis A, norovirus, and small round structured viruses. Measures of association were not reported, however, somatic coliphage was detected in 2 of 19 samples. These two samples were both positive for hepatitis A virus (present in 12 of 19 samples), demonstrating a significant problem with "false negatives".

<u>Jiang, 2001</u>

One water sample was collected at the mouth of each of 12 creeks in Southern California at the point at which the creeks flow into the Pacific Ocean. Pollutant sources were not described. Human adenovirus DNA was measured by PCR. Despite the small number of samples, an extremely strong correlation was found between F+ coliphage and human adenovirus (r=0.99). A correlation between "general" coliphage (F+ and somatic) and human adenovirus was suggested (r=0.32) but did reach statistical significance. The exceedance of threshold values for fecal indicator bacteria was not associated with human adenovirus presence.

<u>Hot, 2003</u>

A total of 68 samples collected from four French rivers were analyzed. The rivers receive wastewater discharges, but the samples were collected upstream of outfalls. Culturable enterovirus was rarely detected (2 of 68 water samples). The presence vs. the absence of enterovirus was not associated with somatic coliphage concentrations. Enterovirus RNA was frequently detected (60 of 68 water samples) and the presence of enterovirus RNA was not associated with concentrations of somatic coliphage.

Jiang, 2004 (not included in EPA review, Table 8)

A total of 21 samples were collected from urban rivers in the Los Angeles, California area, some of which were impacted by tertiary treated wastewater. Enterovirus, adenovirus, and hepatitis A virus presence, were determined by PCR or nested PCR, but not by viral culture. Although the each pathogenic virus was detected in 52-76% of samples, virus presence was not associated with somatic coliphage or fecal indicator bacteria (that data analysis was not included in the manuscript but logistic regression analysis was done to supplement this literature review using data presented in the paper).

Skraber, 2004

In this study of 90 water samples collected from the Moselle River in France from five sites of varying distances from urban wastewater discharges, enterovirus was measured by culture, and both enterovirus and norovirus genogroup II were measured by endpoint PCR. No culturable enterovirus was identified, though genomes of both viral pathogens were detected. Graphs in the paper demonstrate

clear associations between the frequency of detecting genetic material from the pathogenic viruses as categories of somatic coliphage concentration, though statistical testing of these associations was not reported.

Ballester, 2005

In this large 5-year study (the number of samples was not spelled out), water was collected from 5 points in the Massachusetts Bay, which receives treated wastewater through an outfall. Coliphage analysis methods changed after the second year of the study. Viral pathogens were quantified using integrated cell culture with nested PCR detection (ICC n-PCR). The ICC n-PCR results were analyzed as presence/absence data and concentrations of enteric viral pathogens were not described. Somatic coliphage was associated with enteric virus and adenovirus detection, but not with astrovirus, rotavirus or enterovirus. F+ coliphage was associated with the presence of all viral pathogens except for astrovirus. All indicator bacteria samples were reported as "below statistical counts <30 CFU/plate)". Spatial information (differences in detection frequency or concentration of viral pathogens in relation to the outfall diffuser) was presented descriptively, rather than quantitatively. However, it seems that proximity to and direction from the diffuser head may have differential impacts on the detection of different viruses.

Choi, 2005 (not included in EPA review, Table 8)

In this study, at total of 114 water samples from two urban rivers in Southern California (one of which received tertiary treated wastewater) were analyzed for human adenovirus (by culture and PCR) and enterovirus. No statistically significant correlations were observed between either viral pathogen and coliphages or fecal indicator bacteria.

Moce´-Llivina, 2005

In this study, 20 water samples from beaches in Barcelona, Spain, were analyzed. The beaches were impacted by wastewater from an underwater outfall and from rivers that carry secondary treated effluent. Seawater samples were analyzed by PCR for enterovirus; enterovirus cultures were also performed, with subsequent PCR. Relatively little detail is available about methods for evaluating association, but receiver operating characteristic testing demonstrate that concentrations of somatic coliphages and concentrations of enterococci were predictive of enterovirus.

<u>Jiang, 2007</u>

In this study, 206 samples collected from rivers that flow into Newport Bay, California, and from beaches on the Bay were analyzed. Point sources of fecal pollution were not described, but the Bay receives runoff from urban and agricultural areas. Enterovirus and adenovirus detection was infrequent (<5% of samples) and their presence was not associated with F+ coliphage or fecal indicator bacteria.

Boehm, 2009

In this study, water samples were collected once per hour for 72 hours from Avalon Beach, California, which is impacted by leaky sewage pipes. The primary focus on this research was the photoinactivation of pathogens and indicator microbes. No adenovirus was detected by endpoint PCR, but enterovirus was detected. No statistically significant correlations were observed between enterovirus and either F+ or somatic coliphage. Statistically significant inverse associations were observed between enterovirus and FIB (*E. coli* and enterococci).

Espinosa, 2009

In this study 80 samples were collected from a system of irrigation canals and from drinking water wells near Mexico City, Mexico. The canals may have had non-point sources of fecal pollution, but wastewater discharges were not mentioned. Coliphages were analyzed by culture, but the study did not state whether it was F+ or somatic coliphage (or both). Enteric viruses were measured by endpoint PCR (without culture). Coliphages found to be associated with enterovirus (p-value: 0.0182), but not with rotavirus or astrovirus (p-values: 0.150 and 0.459).

Jurzik, 2010 (not included in EPA review, Table 8)

This study involved the analysis of 190 samples collected from four locations on the Ruhr River in Germany that were impacted by wastewater. Viral pathogens were measured by PCR, not by culture. Numerous tests of association between somatic coliphage and a viral pathogen RNA (including adenovirus, norovirus, and rotavirus) were reported. None of these were statistically significant at a p=0.05 level, though somatic coliphage was associated with polyomavirus (not thought to be a cause of gastroenteritis in humans, though lifelong asymptomatic infection is thought to be common) only in waters with the temperature above 10 °C. Several statistically significant associations between fecal indicator bacteria and viral pathogen RNA (*E. coli* and rotavirus, coliforms and rotavirus) were observed, as well as associations between fecal indicator bacteria and polyomavirus.

Lodder, 2010

This analysis of 75 water samples collected at ten locations in the Netherlands impacted by wastewater discharge found that coliphage was correlated with enterovirus (measured by culture) but not with

reovirus (measured by culture), norovirus or rotavirus (both measured by PCR). The correlation itself was not described by a correlation coefficient value, only a p-value. The coliphage method a high rate of "false negatives," as in the two samples that tested negative for F+ coliphage, infectious enterovirus was present, and in one of those two samples, norovirus and rotavirus were also present.

Haramoto, 2011 (not included in EPA review, Table 8)

This analysis involved nine water samples from shallow groundwater wells and one sample from a polluted river in the Kathmandu Valley, Nepal. Nucleic acid from two viral pathogens (norovirus and adenovirus) were measured by qPCR (not culture). Two protozoan pathogens (Giardia and Cryptosporidium) were also analyzed in water samples. Association between pathogen presence and coliphage presence (or concentration) were not reported. However, of the six samples that did not contain F+ coliphage, two contained pathogens. The presence of a pathogen was more likely in water samples in which *E. coli* was detected, and this was reported to be statistically significant.

<u>Viau, 2011</u>

This analysis involved testing of 88 water samples from 22 Hawaiian streams for coliphage, viral pathogens, bacterial pathogens, bacterial indicators, and microbial source tracking markers. The waters sampled did not receive wastewater discharge. No associations were identified between coliphages and enterovirus or adenovirus. Adenovirus detection was inversely association with *E. coli* concentrations; adenovirus and norovirus genogroup I were inversely associated with a human-specific Bacteroides marker.

Love, 2014

This relatively large study was conducted at two beaches not thought to be impacted by wastewater discharge. However, norovirus RNA was found in 22.3% of samples at one of the beaches (Doheny), indicating substantial human fecal pollution. At the beach with more frequent viral pathogen detection (Doheny), adenovirus detection was inversely associated with measures of F+ coliphage and of enterococci. Adenovirus detection was directly associated with measures of fecal coliforms (finding high fecal coliforms concentrations makes adenovirus presence more likely). Somatic coliforms were not predictive of adenovirus. Norovirus presence could not be predicted by the coliphages or fecal indicator bacteria.

At Avalon beach, which had less frequent detection of adenovirus DNA (9.3% of samples, compared to 25.5% at Doheny beach), higher fecal coliform and enterococci concentrations were associated with a greater probability of detecting adenovirus. Higher F+ coliphage concentrations was suggestive of a greater probability of detecting adenovirus DNA, but this was of borderline statistical significance (p=0.1).

Liang, 2015 (not included in EPA review, Table 8)

This analysis involved 148 water samples from a stormwater reservoir and also from rivers and canals in Singapore. Viral pathogens were measured using qPCR, not culture. Although F+ and somatic coliphages were detected in over 90% of all samples, and rotavirus and norovirus genogroup II were detected in 48% and 39% of samples, there was no significant correlation between the coliphages and the viral pathogens (coliphage was associated with two pathogenic bacteria, Salmonella and Pseudomonas). In contrast to these findings, the fecal indicator bacteria were significant predictors of viral pathogen presence and viral pathogen nucleic acid concentration. The authors suggest that this may be due to contamination from non-human sources and the fact that they used a plaque assay method instead of genotyping of the male-specific RNA coliphages using RT-qPCR.

<u>Updyke 2015</u>

Samples were collected from 18 sites in Hawaii on six occasions. Some sites were near sewage treatment facilities. Samples were tested for FIB and for F+ RNA coliphages by culture. Enteric viral pathogens presence was evaluated by PCR, and samples positive for enterovirus were cultured to evaluate enterovirus infectivity. No samples that were positive for enterovirus on PCR testing showed infectivity on culture. No significant associations between enteric viruses and fecal indicator bacteria were found. Whether coliphage-enteric virus associations were found was not reported but data in table 3 indicates no association.

Not included in this review

In addition to the above studies several other publications were identified that described both coliphage and viral enteric pathogen presence or concentration in surface water [33, 34]. However, not enough information was provided to evaluate associations between coliphage and viral pathogens.

Several studies were not included in this review, but included in the EPA review. These are:

- 1. A study by Baggi et al. [35] focused on changes in virus concentration through the wastewater treatment process. Data in the paper do not allow evaluations of associations between coliphages and viral pathogens in the receiving waters.
- 2. A study by Betancourt and Rose [36], which did not contain quantitative information about pathogenic virus presence.
- 3. A study by Westrell et al. [37] did not include measures of association between coliphages and viral pathogens.

4. A consolidation of three prior studies by Payment and Locas [38] only included data that would only support analysis of potential associations between coliphages and viral pathogens in groundwater

Level Three: Coliphage and viral pathogen literature summary

Study Setting Fecal pollutant sources	Coliphage types, measurement method and concentrations	Viral pathogens, measurement method and results	Number of observations Measures of association between coliphages and pathogens	Measures of association between fecal indicator bacteria and pathogens
<u>Griffin, 1999</u>	Coliphages and analysis	Viral pathogens and analysis	19 samples were	Measures of
	methods	methods	analyzed.	association
Setting	Culture on <i>E. coli</i> ATCC 15597	The presence of poliovirus, coxsackie		were not
The Florida Keys	used to determine "non-	A and B viruses, echovirus, hepatitis	Measures of association	reported.
17 samples were taken from	specific" (RNA and DNA somatic	A, Norwalk viruses (norovirus) and	were not reported.	
canal sites and 2 from	coliphage) concentrations.	small round-structured viruses was	However, somatic	
nearshore water sites.	Culture on <i>E. coli</i> Famp to	determined by endpoint PCR. Viral	coliphage was detected in	
	culture and then genotype F+	culture of pathogenic viruses was not	2 of 19 samples. These	
Fecal pollution sources	RNA coliphage.	done.	two samples did not stand	
Although no sources of			out in terms of viral	
contamination are explicitly	Detection	Viral pathogen detection	pathogens detection.	
mentioned, the canal sites	Non-specific coliphages: 10	79% of samples were		
have been mentioned by the	PFU/100mL in both cases where	positive when assayed with the pan-		
USEPA as being suspected of	they were found.	enterovirus primer set. 63% were		
poor quality and on most		positive for hepatitis A		
canals use septic systems.	F+RNA coliphages not detected			
1	at any site.			

Study Setting	Coliphage types, measurement method and	Viral pathogens, measurement method and results	Number of observations Measures of association between coliphages and	Measures of association between fecal indicator bacteria and
Fecal pollutant sources	concentrations		pathogens	pathogens
Jiang, 2001 Setting Samples collected from 12 Southern California river and creeks at point where freshwater flows into the Pacific ocean. No explicit mention of	Coliphage types and measurement methods A two agar layer method was utilized to detect coliphages. <i>E. coli</i> ATCC 15597 host for DNA and RNA coliphages (this includes somatic and F+ coliphages) <i>E. coli</i> HS (pFamp)R host for F+	Viral pathogen detection method Nested PCR (without viral culture) Viral pathogen nucleic acid detection Human adenovirus DNA detected in 4 of 12 samples	12 water samples taken (one from each sampling location) Measures of association Pearson linear correlation used. The correlation between "coliphages" and adenovirus was not significant (though r=.32),	The presence of adenovirus was not associated with the exceedance of daily limits of bacterial indicators (enterococci,
pollution or sources.	Coliphage presence "Coliphage" present in 12 of 12 samples. F+ coliphage quantifiable in 5 of 12 samples. Coliphage concentration Mean "coliphage" concentration (average calculated by hand): 390.17 PFU/ liter Mean F+ coliphage concentration: 74.14 PFU/ liter	Viral pathogen concentration: Adenovirus: 2901 genomes/liter in the 4 samples with detectable adenovirus.	The presence of human adenovirus was not correlated with the concentration of coliphage. The Tijuana River had the highest concentration of coliphage but a relatively low concentration of adenovirus. However, a correlation between the abundance of human adenovirus and F-specific coliphage was significant, with a correlation coefficient for samples taken from the mouths of the Los Angeles, San Gabriel, Santa Ana, and Tijuana rivers	total coliforms, fecal coliforms).

Study Setting	Coliphage types, measurement method and	Viral pathogen measurement method and results	Number of observations Measures of association between coliphages and	Measures of association between fecal indicator bacteria and
Fecal pollutant sources	concentrations		pathogens	pathogens
Hot, 2003	Coliphage type	Viral pathogens, measurement	Number of observations	No fecal
	Somatic	methods, and results	68 water samples were	indicator
Setting		Enterovirus measured by culture and	analyzed.	bacteria were
Northern France	Measurement method	endpoint PCR (not ICC n-PCR)		measured in
Four rivers were sampled	Somatic coliphages measured		Associations between	this study.
monthly or semimonthly	using a single-agar-layer	Hepatitis A virus, astrovirus, rotavirus,	coliphages and pathogens	
	method.	Norwalk I and Norwalk II viruses	Using Student's test, no	
Fecal pollutant sources		analyzed by endpoint PCR followed by	significant difference was	
Rivers impacted by	Detection	Southern blot hybridization.	found between somatic	
wastewater discharge,	68 of 68 samples contained		coliphage concentration in	
but samples were	measurable somatic coliphage	Detection	samples that were positive	
collected upstream of		Culturable enterovirus found in 2 of 68	vs. negative for culturable	
discharge points.	Concentrations	samples. Other viruses found in 4 of 68	enteroviruses (P = 0.65) or	
	Mean concentration of	samples.	for enterovirus genomes (P =	
	somatic coliphages (PFU1^-1)		0.94	
	in:	Concentrations		
	River A: 1.9 x 10 ⁴	Enterovirus concentration (most	No association between	
	River B: 2.2 x 10 ⁴	probable number of cytopathogenic	somatic coliphage	
	River C: 8.5 x 10 ³	units or MPNCU ⁻¹) in:	concentrations and "other	
	River D: 3.3 x 10 ³	River A: 33	enteric viruses" presence.	
		River B: 6		
		River C: <1		
		River D: <1		

		Viral pathogens,	Number of observations	
Study	Coliphage types,	measurement	Measures of association	Measures of association
Setting	measurement method	method and results	between coliphages and	between fecal indicator bacteria
Fecal pollutant sources	and concentrations		pathogens	and pathogens
<u>Jiang, 2004</u>	A two agar layer system	Pathogens and	21 samples were taken.	The relationship between fecal
	was used. Somatic	measurement		indicator bacteria and enteric
Setting	coliphages were grown on	methods	The relationship between	pathogens was not explored in
Southern California	Escherichia coli ATTCC	Adenovirus,	coliphages and enteric pathogens	the paper.
urban rivers and	15597 and F+ coliphages	enterovirus, and	was not explored in the paper.	
creeks.	were grown on <i>E. coli</i>	hepatitis A were		Using data available in Table 3,
	HS(pFamp)R as a specific	identified by endpoint	Using data available in Table 3,	logistic regression analysis of the
Fecal pollutant sources	host for F-specific	PCR. In the case of	logistic regression analysis of the	presence of each pathogen was
None of the sites were	coliphage.	adenovirus, nested	presence of each pathogen was	conducted. Enterococci and
thought to be impacted		PCR was performed	conducted. Somatic coliphage	fecal coliforms were lognormally
by agricultural run-off.	Coliphage detection	(without viral culture)	was lognormally distributed, and	distributed, and the log10-
At least one river (the			the log10-transformed somatic	transformed concentrations of
San Gabriel River)		Viral pathogen	coliphage values did not	these indicator bacteria did not
received tertiary-	Coliphage Concentration	detection:	approach statistical significance	approach statistical significance
treated sewage	Geometric Mean: 119	In 21 samples,	as predictors of either	as predictors of either
effluent.	PFU/100mL	adenovirus,	adenovirus, enterovirus, or	adenovirus, enterovirus, or
	Average: 929 PFU/100mL	enterovirus, and	hepatitis A presence.	hepatitis A presence.
	F-specific coliphages:	hepatitis A virus were		
	Geometric Mean: 64 PFU/	detected in 11, 13,	(Indicator concentrations listed	
	100mL	and 16 samples,	as "less than" were converted to	(Indicator concentrations listed
	Average: 152 PFU/100mL	respectively.	half of the less than (presumably	as "less than" were converted to
			limit of quantitation)	half of the less than (presumably
				limit of quantitation)

Study Setting Fecal pollutant sources	Coliphage types, measurement method and concentrations	Viral pathogens, measurement method and results	Number of observations Measures of association between coliphages and pathogens	Measures of association between fecal indicator bacteria and pathogens
SettingFive sampling locationson the Moselle River inFrance.Pollutant sourcesThe sampling points werevarying distances fromtowns, which weresources of human fecalcontamination. Animalfecal sources may havebeen present as well near	Type and methodSomatic coliphage counts wereperformed according to thestandard methods of theInternational Organization forStandardization.Somatic coliphagedetection:Somatic coliphage concentrationsApparently somatic coliphage wasdetected in all samples andconcentrations were associated	Viral pathogens and methods 90 of 170 samples analyzed for infectious enterovirus by cell culture and integrated cell culture endpoint PCR. Norovirus genogroup II were detected using endpoint PCR. Following PCR amplification, viral cDNA was identified by DNA enzyme immunoassays. Viral pathogen detection: No cytopathic effect of enterovirus in any of 90 samples cultured.	Figure 3b demonstrates a clear association between ordinal categories of coliphage concentration and percent detection of pathogenic virus genomes, though statistical testing of the association was not performed.	Figure 3a demonstrates a clear association between coliform concentration and percent detection of pathogenic virus genomes, though results of statistical testing of the association were not reported.
some sampling points as one site was noted to be far from such sources.	with water temperature: Below 15.7 degrees Celsius: 3.29+/- 0.59 log PFU/100 mL Above 15.7 degrees Celsius: 2.73+/- 0.59	Pathogenic virus nucleic acids were present by the DNA enzyme immunoassay in 38% of samples (enterovirus) and 27% (norovirus)		

Study	Coliphage			Measures of association
Setting	measurement	Viral pathogen measurement	Number of observations	between
Fecal pollutant	method and	method	Measures of association between coliphages and	indicator bacteria
sources	concentrations	Results of pathogen testing	pathogens	and pathogens
Ballester, 2005		Viral pathogens analyzed	Number of observations	Indicator bacteria
	Coliphage	Enterovirus, Adenovirus,	Number of water samples not explicitly given, although	concentrations
Setting	analysis	Astrovirus, and Rotavirus	samples were taken from five sites, bimonthly, for seven	"Indicator
Massachusetts	1998-1999; EPA		years.	bacteria remained
Вау	Method 1602	Analysis method		below statistically
	(Single Agar	1998-1999: Total culturable	Measures of association	significant counts
Fecal pollutant	Layer Procedure)	virus most probable number	Pearson linear correlation to analyze "relationships	(<30 cfu per
sources	during	(TCV-MPN).	between organism presence, proximity to the outfall	plate)."
Sampling sites	From 2000-220		and seasonal variation."	
chosen based on	EPA Method	2000-2002: Integrated cell		Correlation
proximity to an	1601 (Two-step	culture-nested PCR (ICC-nPCR).	Somatic coliphages were correlated (no p-value or	between
outfall pipe	Enrichment	Some of the 1998-1999 samples	confidence level indicated) with enteric viruses (r=	indicator bacteria
diffuser head	Procedure).	were re-analyzed using ICC-	0.573), adenovirus (r= 0.672). Somatic coliphages were	and enteric
from the Deer		nPCR.	not significantly correlated with astrovirus, rotavirus,	viruses
Island Sewage	Concentrations		enterovirus.	
Treatment Plant,	Coliphage	Results of viral pathogen		There was no
which releases	detection	testing	F+ coliphages were significantly correlated with:	significant
treated	increased	Concentrations were not given.	Enteric viruses in general (r= 0.682); Adenovirus (r=	correlation
wastewater into	substantially with	Instead, detection percentages	0.651); Rotavirus (r= 0.692); Enterovirus (r= 0.608) ;	between enteric
the bay.	the change from	were utilized.	Astrovirus (r= 0.122) (not significant).	viruses and
Samples	single agar layer			indicator bacteria
collected every 2	to two-step		In 2000–2002 adenovirus was mostly prevalent directly	(r= 0).
months	enrichment.		east of the diffuser, rotavirus directly to the west of the	
throughout the 7	F+: from 8 to		diffuser, astrovirus at the shore southwest of the	
year period.	58%		diffuser, and enterovirus at the farthest site	
	Somatic: from		in the mouth of the bay.	
	9.8 to 55%.			

Study		Viral pathogens,	Number of observations	
Setting	Coliphage types,	measurement method and	Measures of association	Measures of association
Fecal pollutant	measurement method and	results	between coliphages and	between fecal indicator
sources	concentrations		pathogens	bacteria and pathogens
<u>Choi, 2005</u>	Escherichia coli ATCC 15597	Viral pathogen	114 water samples were	Fecal coliforms, total
	strain was used as the host	Human adenovirus	taken.	coliforms, and enterococci
Setting	for general coliphages (both	measured by qPCR. Viral		measured by culture.
Southern California	somatic and F+coliphage),	culture using 2 cell lines		
Samples taken from	while <i>E. coli</i> Famp was		No statistically significant	Several correlation
two urban rivers, the	the specific host used for F-	Enterovirus by endpoint	correlations between	coefficients between
San Gabriel and Los	specific coliphages.	PCR	human adenoviruses and	pathogens and indicator
Angeles rivers.			coliphages were	bacteria were presented,
Tertiary-treated	Coliphage samples were	Viral pathogen detection	identified.	but apparently these were
sewage is released	mixed with bacteria in soft	Adenovirus by qPCR,		not statistically significant,
into the San Gabriel	agar and poured over an LB	detected in 16% of		as the text notes that no
River.	agar bottom plate.	samples. No samples were		statistically significant
		positive for culturable		correlations were
	Coliphage concentration	adenovirus.		identified between human
	range: 1 -10 ³ PFU/ 100mL	Enterovirus RNA was		adenoviruses and fecal
	F-specific coliphage	detected in 7% of samples.		indicator bacteria.
	concentration: 1.0E+00-			
	1.0E+03 PFU/ 100mL	Adenovirus concentration		
		range: 10 ² -10 ⁴ genomes/		
		liter of water		

			Number of	Measures of
			observations	association
Study		Viral pathogens,	Measures of	between fecal
Setting	Coliphage types,	measurement method and	association between	indicator
Fecal pollutant	measurement method and	results	coliphages and	bacteria and
sources	concentrations		pathogens	pathogens
<u>Moce´-Llivina,</u>	Somatic and F+ coliphages measured using	Enterovirus was cultured using	20 water samples	A ROC curve
<u>2005</u>	a double-layer technique, using standards	three methods and then	were utilized.	using the
	from the International Organization of	detected by endpoint PCR.		criteria
Setting	Standardization. F+ RNA coliphages	Enterovirus was also detected	A ROC curve using the	"numbers of
Two bathing	genotypes using oligonucleotide	in seawater samples by	criteria "numbers of	enteroviruses
beaches in	hybridization.	endpoint PCR.	enteroviruses in 10	in 10 liters of
Barcelona, Spain.			liters of seawater" and	seawater" and
	Coliphage detection		indicators. Somatic	indicators.
Pollutant sources	Somatic coliphage in 20/20 samples.	In samples tested by the 3 viral	coliphage produced a	Enterococci
The beaches are	F+RNA coliphage in 3/20 samples.	culture methods, VIRADEN	curve with an area of	produced a
impacted by		resulted in the most frequent	0.63, indicating	curve with an
municipal	Coliphage concentration	detection (8 of 11 samples).	predictive value,	area of 0.7,
wastewater	Somatic coliphages (average of 20): 743.75		though it's not clear	indicating
effluents via	PFU/100mL		what the dichotomous	predictive
underwater outfalls			outcome enterovirus	value, though
and secondary	Coliphage type:	Enterovirus present in 4 of 20	variable was	it's not clear
treatment effluents	18% genogroup I , 82% genogroup II	samples by endpoint PCR; in 10	(presumably presence	what the
from small towns		of 18 samples by culture.	vs. absence).	dichotomous
via rivers that flow	(Bacteriophages that infect Bacteroides	Enterovirus concentrations in		outcome
into the sea near	thetaiotamicron detected in 14/20	culture were generally 1-4 PFU/		enterovirus
the beaches.	samples)	10 Liters, though two samples		variable was.
		had concentration about 50		
		times higher than that.		

		Viral pathogens,	Number of observations	Measures of
Study	Coliphage types,	measurement method	Measures of association	association between
Setting	measurement method	and results	between coliphages and	fecal indicator bacteria
Fecal pollutant sources	and concentrations		pathogens	and pathogens
<u>Jiang 2007</u>				
	Coliphage analysis	Viral pathogen analysis	Observations	The partial correlation
Setting	method	Enterovirus, detected by	206 samples analyzed	analysis, controlling for
15 locations in Newport	F+ coliphage, by two-step	endpoint PCR. Adenovirus,		temperature, salinity,
Bay, California. Some	enrichment (EPA method	detected by nested PCR	The partial correlation analysis,	and sampling data,
were tributaries that flow	1601).	(endpoint). Culture of	controlling for temperature,	showed that the
into the Bay and		viral pathogens was not	salinity, and sampling	seasonal detection of
historically had high fecal	Coliphage presence	performed.	data, showed that the seasonal	human adenovirus and
indicator bacteria			detection of human adenovirus	enterovirus was
concentrations. Other	Coliphage concentration	Viral pathogen presence	and enterovirus was negatively	negatively correlated
sites included bathing	F+ coliphage was	Perhaps due to recovery	correlated to coliphage.	to that of FIB.
beaches.	reported as	limitations,	However, these correlations	However, these
	presence/absence due to	human adenoviruses was	were statistically insignificant (P	correlations were
Fecal pollutant sources	the upper limit of	detected in 4.3% and	>0.05).	statistically
The Bay receives runoff	quantification.	enteroviruses in, 4.8% of		insignificant (P > 0.05).
from a large, mixed,		all samples.	Similarly, no statistical	
urban and agricultural			relationship was apparent	Similarly, no statistical
watershed.			within sampling sites between	relationship was
			human viruses and coliphage.	apparent within
				sampling sites between
				human viruses and
				fecal indicator bacteria.

Study	Coliphage types, measurement method and	Viral pathogens, measurement method and results	Number of observations Measures of association	Measures of association between fecal indicator
Setting Fecal pollutant sources	concentrations	results	between coliphages and pathogens	bacteria and pathogens
Espinosa, 2009	Coliphage measurement Double layer agar method.	Pathogens and measurement method	80 water samples analyzed.	Although <i>E. coli</i> , total coliforms, enterococci,
Setting:	Not stated whether somatic,	Enterovirus, rotavirus,		were measured,
Southern Mexico City	F+ or both.	astrovirus measured by	Coliphages found to be	associations between the
Surface water in urban		endpoint PCR.	associated with	bacteria and viral
settlement, taken from 10	Coliphage detection		enterovirus (p-value:	pathogens were not
locations along a network of canals used for	Present in 40 of 80 samples.	Viral pathogen detection Rotavirus and enterovirus	0.0182), but not with rotavirus or astrovirus	reported.
irrigation as well as 10	Coliphage concentration	present in approximately	(p-values: 0.150 and	
drinking water wells. No	Not reported	30% and 60% of cold, dry-	0.459).	
wastewater mentioned,	notreported	season canal samples,	0.1337.	
but water used for		respectively; about 10% of		
irrigation may have		warm, wet season samples.		
domestic animal and		,		
human contamination.				

Study	Coliphage	Viral pathogens and		
Setting	measurement	measurement methods;	Number of observations	Measures of association
Fecal pollutant	method and	Results of pathogen	Measures of association between	between fecal indicator bacteria
sources	concentrations	testing	coliphages and pathogens	and pathogens
Jurzik, 2010.	Method	Method	Number of samples	Using a Pearson correlation, r
	Somatic	Quantitative PCR (not	Number analyzed for individual viruses	values were found for the
Setting	coliphages	ICC n-PCR)	ranged from 174 (enterovirus) to 190	relationships between:
Germany, five	were		(human adenovirus)	E.coli and polyomavirus:
sites along the	quantified			Equal or Above 10 degrees C:
river Ruhr.	using a double	Concentrations	Pearson correlation coefficients were	0.49*
	layer plaque	Detection frequency:	reported within strata of water	E. coli and Rotavirus:
Pollutant	assay using a	enterovirus (17.8%),	temperature:	Below 10 degrees C: 0.46*
sources	method of the	norovirus genotype II	Somatic Coliphages were found to have the	At all temperatures: 0.31*
Five sampling	International	(25.7%), rotavirus	following r values with:	
sites ranged	Organization	(63.5%) human	Adenovirus:	Total coliforms and
from 1.5 to 10	for	polyomavirus (68.6%),	-Below 10 degrees C: 0.27	polyomavirus:
km downstream	Standardizatio	human adenovirus	-Equal or Above 10 degrees C: -0.07	Equal or Above 10 degrees C:
of the nearest	n.	(96.3%)	-At all temperatures: 0.12	0.67*
sewage plant.			Polyomavirus:	Total coliforms and rotavirus:
	Concentrations	Concentration Range (in	-Below 10 degrees C: -0.07	Below 10 degrees C: 0.46*
	Somatic	genome equivalents per	-Equal or Above 10 degrees C: 0.41*	At all temperatures: 0.29*
	coliphage	liter or gen.equ./L) for:	-At all temperatures: -0.03	
	concentrations	Adenovirus: 5.7 x 10 ¹ to	Rotavirus:	Enterococci and polyomavirus:
	were found to	7.3 x 10 ⁵	-Below 10 degrees C: -0.04	Equal or Above 10 degrees C:
	have a range of	Enterovirus: 1.0 x 10 ² to	-Equal or Above 10 degrees C: -0.07	0.41*
	3.0-8.1 x 10^4	1.1 x 10 ⁶	-At all temperatures: -0.05	
	PFU/L.	Norovirus GII: 3.1 x 10 ¹		*P<0.05
		to 6.4 x 10 ⁴	*P<0.05	Correlations between the fecal
		Rotavirus:	(none of the other correlation coefficients	indicator bacteria and human
		1.6 x 10 ¹ to 3.8 x 10 ⁵	listed above were statistically significant at	adenovirus were not significant.
		Polyomavirus:	p<0.05)	No other correlations between
		3.7 x 10 ¹ to 5.2 x 10 ⁵		the FIB and viral pathogens were
				observed at a p=0.05 level of
				significance.

Study Setting Fecal pollutant sources Lodder, 2010 Setting The Netherlands, 10 locations were sampled, either intake areas of drinking water	Coliphage measurement method and concentrations Method Concentrations were determined via a monolayer plaque assay. Concentrations	Viral pathogens and measurement methods; Results of pathogen testing Viral pathogens and measurement methods Enterovirus, reovirus: BGM cell culture (but not ICC nPCR) Norovirus, rotavirus: RT-PCR Results	Number of observations Measures of association between coliphages and pathogens Number of observations 75 water samples were taken (total) form 10 locations over a 4-year period. Measures of association A correlation between the	Measures of association between fecal indicator bacteria and pathogens Fecal indicator bacteria were not evaluated
companies, or	Somatic and F+	Enterovirus, reovirus, norovirus, and rotavirus	presence enterovirus and	
upstream of source water intake areas.	coliphage detected in 100% and 97% of samples,	detected in 75%, 83%, 45% and 48% of samples, respectively.	coliphages was highly significant (< 0.0005) but the correlation coefficient was not	
Pollutant sources Several river locations (Maas and Drentsche Aa	respectively. Range of mean somatic coliphages	Range of mean concentrations: Enterovirus: 0.0052 to 2.4 PFU/liter Reovirus: 0.013 to 1.3 PFU/liter	reported. None of the other viral pathogens were correlated with coliphages.	
catchments) had wastewater treatment plants located upstream of	in each location: 105 to 1.7 x 10 ⁴ PFU/liter Range of mean F-	Norovirus: 0 to 26 PCR-detectable units (PDU)/liter Rotavirus: 0.88 to 375 PDU/liter	In the two samples that tested negative for F+ coliphage, enterovirus was present, and in one of those two samples,	
sampling locations.	specific phages in each location: 2.0 to 4.3 x 10^3 PFU/liter	Problem with qPCR method to quantify viruses: in 49% of samples, could not differentiate non-detect from interference.	norovirus and rotavirus were also present.	

				Measures of
	Coliphage types,		Number of observations	association
	measurement method and	Viral pathogens,	Measures of association	between fecal
Study Setting	concentrations	measurement method and	between coliphages and	indicator bacteria
Fecal pollutant sources		results	pathogens	and pathogens
Haramoto, 2011	Coliphage types	Viral pathogens	Number of observations	Total coliforms
	F+ RNA coliphages and	Adenovirus, norovirus	10 water samples were	detected in all
Setting	genogroups	Measurement method	analyzed.	samples; E. coli
Kathmandu Valley,		RT-qPCR		detected in 7 of 10
Nepal	Measurement method		Statistical testing of	samples.
Samples were taken	qPCR	Other pathogens	associations between F+ RNA	
from nine shallow		Samples were also analyzed	coliphages and the enteric	The (33%) of the
groundwater wells, as	Results	for Giardia and	viruses was not reported.	nine wells tested
well as one river.	Concentration (gene	Cryptosporidium.		had no detectable E.
	copies/volume of water) not		Of the two samples that tested	<i>coli</i> and none of
Fecal pollutant sources	quantified, just CT values	Results	for positive adenovirus, one	these samples
These well sites are	detection of coliphages via	All pathogens were detected	tested negative for coliphage	tested positive for
located near toilets,	qPCR was performed, and the	in the river sample. Viral or	and one tested positive for	the viral or
and are suspected by	cycle threshold was recorded.	protozoan pathogens were	coliphage.	protozoan
the authors of failing to		detected in 1-3 wells		pathogens.
meet WHO guidelines	Concentrations	(depending on the particular	Of the two well samples that	Five of the six E.
for microbiological	F+ coliphage detected in 3	pathogen of interest).	tested positive for norovirus,	coli-positive samples
contamination. The	well and the 1 river samples.		both were positive for	were
river contains human	Results	Concentrations (gene	coliphage.	positive for the
fecal pollution.	CT range for:	copies/volume of water) not	Of the three well samples that	pathogens (p <
	F-Specific Coliphage:	quantified, just CT values	tested positive for coliphage,	0.05).
	Genogroup I: 39.2 (one	CT range:	one was negative for the viral	
	location)	Adenovirus: 34.3+/-0.4 – 41.5	pathogens.	
	Genogroup II: 31.9-38.9	Norovirus:		
	Genogroup III: 38.8 (one	Genogroup I: 36.7+/-0.1 –		
	location)	36.8+/-0.1		
		Genogroup II: 34.0+/-0.6 –		
		37.5+/-0.6		

		Viral pathogens		
Study		and measurement		
Setting	Coliphage	methods;	Number of observations	Measures of association
Fecal pollutant	measurement method and	Results of	Measures of association between	between fecal indicator
sources	concentrations	pathogen testing	coliphages and pathogens	bacteria and pathogens
Love, 2014			Number of observations	At Doheny Beach, the
	Coliphage analysis and	Viral pathogens	324 water samples were taken in total	probability of detecting
Location	concentrations	and measurement	(multiple per sampling day during intensive	adenovirus was greater
Doheny Beach and	A modified version of US EPA	methods	sampling).	in the absence of
Avalon Beach,	Method 1601 (two step	PCR (adenovirus)		enterococci (p=0.001,
Southern California	enrichment) was used for F+	and RT-PCR	A Generalized Estimating Equation model	OR=0.24), and in the
	and somatic coliphage	(Norovirus) but not	was used to determine associations	presence of fecal
Fecal pollutant	detection. Coliphage presence	ICC-nPCR	between coliphages and enteric viruses.	coliforms (p=0.02,
sources	vs. absence was converted to		At Doheny Beach, the probability of	OR=1.004).
Beaches were	most probable number (MPN).		detecting adenovirus was greater in the	Norovirus was not
thought to be			absence of F+ coliphages (inverse	significantly associated
potentially impacted	F+ coliphage concentration:		association; p=0.002, OR=0.24), and had no	with any fecal indicator
from non-point	At Doheny Beach:	Results of	significant association with somatic	bacteria.
source pollution. A	Median 0.3 (range <0.09 to	pathogen testing	coliphages. Norovirus was not significantly	
previous study	140) MPN/ 100mL	Adenovirus and	associated with either type of coliphage.	At Avalon Beach, the
suggested that a	At Avalon Beach:	norovirus were		probability of detecting
leaky sewage system	Median 4.9 (range <0.01 to 37)	detected in about	At Avalon Beach, detecting a direct	adenovirus was
contaminates	MPN/ 100mL	22% of samples at	association between adenovirus and F+	associated with higher
groundwater and		Doheny beach and	coliphages was suggested (OR=1.98)	fecal coliform
then the sewage	Somatic coliphage	in 9.3% and 0.7% of	though this was of marginal statistical	concentrations (p=0.01,
contamination can	concentration:	samples,	significance (p=0.1).	OR=1.99) as well as total
then enter Avalon	At Doheny Beach: Median 4.9:	respectively, at	No mention is made of somatic coliphages	coliform concentrations
Bay during outgoing	(range <1 to 150,000) MPN/	Avalon beach.	at this beach.	(p=0.002, OR=1.44).
tides.	100mL			Norovirus was not
	At Avalon Beach:			included in the
	Median (range <1 to >370) 3.1			modeling for this beach.
	MPN/ 100mL			

			Number of	
Study			observations	
Setting		Viral pathogens,	Measures of	
Fecal	Coliphage types,	measurement method	association between	
pollutant	measurement method and	and results	coliphages and	Measures of association between fecal
sources	concentrations		pathogens	indicator bacteria and pathogens
Liang, 2015.	Coliphage types	Viral pathogen	148 water samples	Spearman's rho correlation coefficients
<u></u>	Somatic, F+	measurement method	taken	(significant at p<0.05, two-tailed t-test):
Setting		qPCR, not by ICC n-PCR	taken	<i>E.coli</i> (qPCR) and norovirus GII: 0.453
Singapore	Method		Spearman's ranks	<i>E. coli</i> (qPCR) and adenovirus: 0.372
Surface water	US EPA Method 1601 (single-	Other enteric	correlation between	Enterococci (qPCR) and norovirus GII: 0.487
in urban	agar-layer).	pathogens analyzed:	F+ or somatic	Enterococci (qPCR) and adenovirus: 0.637
storm water		<i>P. aeruginosa</i> and	coliphage and viral	<i>B. thetaiotaomicron</i> and norovirus GII: 0.421
catchments,	Concentrations	Salmonella spp. by	pathogens: None	<i>M. smithii</i> and norovirus GI: 0.397
as well as	Geometric means	culture.	significant at p<0.05	<i>M. smithii</i> and norovirus GII: 0.411
from rivers	Somatic coliphage: 52		level.	Human polyomavirus and norovirus GI: 0.440
and canals. No	PFU/100mL	Viral pathogen		. ,
explicit	F+ coliphage: 27 PFU/100mL	presence	Coliphages associated	
mention of		Viral nucleic acids	with Salmonella and	Multiple linear regression models of
contamination	Other fecal indicators	detected in 20-48% of	P. aeruginosa.	norovirus GII concentrations:
sources.	analyzed	samples (depending on		<i>E.coli</i> : r ² =0.153; Model Significance=0.02
	B. thetaiotaomicron, M.	the virus)		Enterococci: r ² =0.442; Model
	smithii, and human			Significance=0.000
	polyomavirus, all by qPCR; E.	Results (geometric		<i>M. smithii</i> : r ² =0.762; Model
	coli and enterococci by both	mean gene copies/L)		Significance=0.000;
	culture and qPCR.			
		Rotavirus: 11		
		Astrovirus: 57		
		Norovirus GI: 7		
		Norovirus GII: 104		
		Adenovirus: 13		

			Number of observations	
Study		Viral pathogens,	Measures of	
Setting	Coliphage types,	measurement method	association between	
Fecal pollutant	measurement method and	and results	coliphages and	Measures of association between fecal
sources	concentrations		pathogens	indicator bacteria and pathogens
Updyke, 2015.	Coliphage types	Viral pathogen	108 water samples	No significant associations.
	F+ RNA	measurement method	analyzed (18 sites).	
Setting		Enterovirus, norovirus	Samples from six of	
18 locations in	Method	genogroup I, norovirus	the sites (36 samples)	
Hawaii, sampled six	PCR	genogroup II	were used in analyses	
times to evaluate			of indicators and	
seasonal effects on	Other fecal indicators	By PCR. Samples that	enteric viruses.	
microbe	analyzed (by PCR)	tested positive for		
concentration.	E. coli	enterovirus were	Coliphage-enteric	
		analyzed by culture.	pathogen associations	
Pollutant sources			were not reported. Of	
Some sampling			six sites that were	
locations were		Viral pathogen	each tested twice, two	
near sewage		presence	locations tested	
treatment plants.		31 samples were	positive (once each)	
		positive for enterovirus	for F+ coliphage. Of	
		on PCR. All of these	the 10 days/sties of	
		showed no infectivity on	negative coliphage	
		culture.	results, 7 were	
			positive for enteric	
			viruses (Table 3)	

Coliphages as indicators of health risk

The EPA's literature review of coliphages as indicators of fecal contamination summarized the results of eight epidemiologic studies. One of those studies, "Griffith et al. (personal communication, 2015)," remains unpublished and the methods and details of the findings could not be reviewed. The other seven, along with a study that was published in late 2015 (Dorevitch et al., 2015) are summarized below. Basic aspects of studies and findings are provided in Table 2 and details of individual studies follow. Note that Dorevitch is the author of this review and is not the ideal person to critique that study.

Level One: Overall summary of coliphage and health risk

As presented in Table 2, one epidemiologic study found that coliphages but not FIB predict illness (Colford et al.); one study found that FIB but not coliphages predict illness (Van Asperen); three studies found that both FIB and coliphage predict illness (Lee et al., Wiedenmann et al., Wade et al.); one study found that neither FIB nor coliphage predict illness (Abdelzaher et al.); one study found that coliphage predict illness (Abdelzaher et al.); one study found that coliphage predicts illness in some settings/conditions while FIB did not (Dorevitch et al.); and one study did not summarize data analysis in a way that would provide an answer to this question (von Schirnding et al.). It should be noted that the epidemiologic studies varied substantially in study design, recreational activity, exposure definitions, water quality, laboratory methods, and data analysis methods. To summarize, there is little consistency in the epidemiologic literature regarding whether coliphage concentrations predict illness following water recreation. This is in contrast to the general consistency among the epidemiologic studies that at beaches impacted by wastewater, fecal indicator bacteria do predict illness.

Chudu	Impacted by wastewater	C :*	Coliphage was an	FIB was an indicator
Study Von Schirnding, et al., 1992 [39]	treatment plant? No, but beaches were impacted by local sources of untreated human fecal pollution	Size* Medium	indicator of health risk? Not determined because concentrations of coliphage were "non- significant"	of health risk? Not reported. Rate of illness at the beach with higher FIB concentrations tended to be higher than at the beach with lower FIB, but this was not statistically significant.
Lee et al., 1997 [40]	The concrete whitewater slalom course was fed in part by wastewater	Medium	F+ coliphage: Yes	Yes, but not independently of coliphage
van Asperen et al, 1998 [34]	Yes, by treated domestic sewage	Medium	F+ coliphage: No	Yes
Wiedenmann et al., 2006 [41]	Yes, some sites were impacted by sewage discharge and combined sewer overflows	Medium	Somatic coliphage: Yes	Yes
Colford et al., 2007 [42]	Not impacted by point sources	Large	F+ coliphage: Yes Somatic coliphage: No	No
Wade et al, 2010 [6]	Beaches were thought to be impacted by wastewater discharge	Large	On days of higher coliphage concentrations, illness rates among swimmers were higher than rates among non- swimmers. Risk among swimmers was not associated with coliphage measures at a p<0.05 of statistical significance.	Yes
Abdelzaher, et al 2011 [43]	No	Medium	Somatic coliphage: No	No
Dorevitch 2015 [36]	Effluent-dominated	Large	Somatic, F+: No	No
	Not effluent- dominated	Medium	During dry weather: Borderline significance	No
	Not effluent- dominated	Large	During wet weather: No	No

Table 2: Summary of epidemiologic studies and indicators as predictors of illness

*Study size: Small <250 water-exposed study participants; Medium: 250-999 water-exposed study participants; Large: ≥1,000 water-exposed study participants

Level Two: Coliphage and health risk literature details

		Health risk findings :	Coliphage as a
Study, setting, study	Water sampling, analysis, and	rates of illness, FIB as predictors of	predictor of
design, participants	measured microbe concentration	illness	gastrointestinal illness
Von Schirnding, 1992 [39]			
Cattles and facely allots at		Pata of CLillagoo (defined by above	
Setting and fecal pollutant	Sampling: three locations/beach,	Rate of GI illness (defined by phone	Could not be evaluated
sources	before and during peak use	interview 3-4 days after index exposure)	as coliphage densities
Two beaches in Cape Town,			were "insignificant"
South Africa. One was	Fecal indicator bacteria	GI symptoms were reported in about 4%	
impacted by septic	concentrations	of swimmers at the more polluted	
systems, storm runoff, and	Fecal coliforms:	beach, and 2% of non-swimmers at the	
fecal pollution from a river.	Median 76.5/100mL and	less-polluted beach, and among	
	8.0/100mL at the two beaches	swimmers and non-swimmers at the	
Design		less-polluted beach. Differences not	
Cohort enrolled at two	Enterococci:	statistically significant.	
beaches of differing water	Median 51.5/100mL , 2.0/100mL		
quality	at the two beaches	At the more polluted beached, FIB	
		concentrations were higher than at the	
Participants	Coliphage measurement Plaque	less polluted beach	
"Swimmers" exposure	assay using <i>E. coli</i> strain C as host	Fecal coliforms median 75.6 vs. 8.0	
above the waist to beach	Coliphage and <i>S. aureus</i> :	CFU/100mL	
water	"insignificant densities were	Enterococci 51.5 vs 2.0	
N=478	detected"	CFU/100mL	
"Non-swimmers"		Fecal indicator bacteria as predictor of	
Exposure to beach water		GI illness	
below waist only, OR no		Not reported	
water contact.			
N=254			

Study, setting, study design, participants	Water sampling, analysis, and measured microbe concentration	Health risk findings : rates of illness, FIB as predictors of illness	Coliphage as a predictor of gastrointestinal illness
Lee et al., 1997 [40]	Water sampling		
	Hourly	Rates of illness:	
Setting		Diarrhea reported by 2-15% of	Relative risk by F+ coliphage
Whitewater slalom course fed	F+ coliphage analysis	participants on 8 different days of the	PFU/volume (reported as per
in part by wastewater	Grown on S. typhimurium	study; median=7.5%.	10mL but probably should
	Range of daily means 1-99, median		have been reported as per
Design	26 PFU/100mL	Densities of either E. coli or S. faecalis	100mL)
Cohort study of canoeists and		were significant predictors of GI illness	1-3: 1.0
rafters on 11 dates (1-2 month,	Enterococci	in models that did not include F+	26-32: 2.6
March –Nov), symptom follow-	Range of daily means 7-3,963;	coliphage. However, after taking into	69-308: 2.8
up 1 week later	median 102 CFU/100mL	consideration F+ coliphage densities, E.	
		coli and S. faecalis were no longer	Association between F+
	Enterovirus	significant predictors.	coliphage and enterovirus
N=473 water users (no	Exceeded 4PFU/10L on only one		On 9 dates both were
unexposed group) who	occasion		measured. No meaningful
completed 1-week follow-up			correlation, with R ² =0.04
questionnaire (out of 755=63%)			(Log10 transformed,
			R ² =0.008)

	Water sampling,		Coliphage as a predictor of
	analysis, and measured	Health risk findings :	gastrointestinal
Study, setting, study design, participants	microbe concentration	rates of illness, FIB as predictors of illness	illness
van Asperen et al., 1998 [44]	Sampling	Rates of illness	Triathletes more
		Based on information recorded in a symptom	likely to develop
Setting	Done at multiple	diary for 6 days after event.	illness. Adjusted
Netherlands inland waters	locations during events.		odds ratios varied
		Non-swimmers (run-bike-run participants)	by definition of
Design	Coliphage analysis	Illness (GI-UK definition) rate=1.7/100	illness, GI-UK, 1.6
Cohort with comparison group	F+ RNA coliphage		(0.8 – 3.2)
	analysis using ISO DIS	Swimmers (triathletes)	
Participants	10705-1.	Illness (GI-UK definition) rate=3.6/100	No association
Swimmers (1 or 1.5 km distance) in			between GI illness
Olympic distance triathlon. N=827 with	Concentrations		attack rate (per
completed f/u questionnaires (62.3%	F+ RNA coliphage	FIB concentrations and illness	study date) and
response rate)	concentration	Increased illness incidence with increasing	coliphage
	Geometric mean=0.7/L	microbe concentrations above a threshold. For	concentration.
Non-water recreators Participants in run-	Range <0.001, 13.6/L	thermotolerant coliforms and <i>E. coli</i> , threshold	
bike-run events. N=773 with completed	(n=31 samples)	estimated as GMs of 220/100 mL and	
f/u questionnaires (62.0% response rate)		355/100 mL, respectively.	
	E. coli:	Association between illness and these indicators	
Fecal pollutant sources	Geometric mean	as dichotomous variables (above vs. below	
	=204/10mL	threshold) statistically significant. As	
	Fecal strep:	continuous variables on a log ₁₀ scale, correlation	
	Geometric mean =16	significant, but R ² or parameter estimate not	
		presented.	
		No association between GI illness attack rate	
		(per study date) and fecal strep or enterovirus.	

			Coliphage as a
Study, setting, study design,	Water sampling, analysis, and measured	Health risk findings :	predictor of
participants	microbe concentration	rates of illness, FIB as predictors of illness	gastrointestinal illness
Wiedenmann, 2006 [41]	Water sampling	Rates of gastrointestinal illness	Proposed NOAEL,
	Every 20 minutes during exposure trails	Illness rate 1 week after the exposure was described	microorganisms per
Setting:		using three definitions of illness. This summary uses	100mL: (using the
Beaches at five freshwater	Coliphage analysis	the one most similar to the definition in recent US	authors' "definition 1"
sites in Germany, 4 lakes	Double agar layer method	epidemiologic studies (GE_UK)	of exposure)
and one river; multiple		Unexposed: 1.4/100 bathers	Somatic coliphage:
potential fecal pollution	Mean 'microorganisms' reported per	Exposed: 3.3/100 bathers	150/100mL (authors
sources	100mL		note that this estimate
	(approximately 420 samples, except	Proposed NOAEL, microorganisms per 100mL: (using	may not be accurate
Design: Randomized	Aeromonads, which was tested in 385	the authors' "definition 1" of exposure, which does	because of non-normal
controlled exposure trial	samples)	not take into account the number of times an	distribution of
		individual immersed their head)	coliphage
Exposure	<i>E. coli</i> : 136/100mL		measurements)
10 minutes in the water	Intestinal enterococci: 37/100mL	<i>E. coli:</i> 180/100mL	
exposure; minimum of 3	C. perfringens: 18/100mL	Intestinal enterococci: 24/100mL	Attributable risk % of
head immersions. Could also	Aeromonads: 8,200/100mL	C. perfringens: 13/100mL	GI illness,
swim, play in the water	P. aeruginosa: 10/100mL		above NOAEL vs non-
Unexposed group: stayed in		Attributable risk % of GI illness (GE_UK)	swimmer:
grass/sand area, no water	Somatic coliphage: 20 /100mL	above NOAEL vs non-swimmer:	Somatic coliphage: 5.1
contact		<i>E. coli</i> : 3.6	
	Researchers defined an optimized	Intestinal enterococci: 3.1	
Number of study	threshold for each microbe that	C. perfringens: 3.3	
participants	differentiates elevated risk from		
Final cohort analyzed=1,759;	background risk, and referred to this as	Good evidence of a dose-response relationship	
not stated how many were	the no observed adverse effect level	between ordinal measures of <i>E. coli</i> , intestinal	
water-exposed	(NOAEL)	enterococci, C. perfringens and a somewhat different	
		definition of gastroenteritis (does not include stool	
		frequency)	
		No associations between illness and Aeromonads, P.	
		aeruginosa.	

Author, Year,	Participants:	Water sampling			
Setting, study	Water, non-water	and microbe	Coliphage test		Findings: other WQ
design	Illness rate	concentrations	type	Findings	measures and health
Colford 2007			EPA Method	Somatic coliphage: no	Illness not associated
[42]			1601	association	with measures of
Six marine	4,234 with				enterococci (culture or
beaches	complete	Enterococcus, culture		Based on data in	qPCR), fecal coliforms,
thought to	telephone data	GM=29 MPN/100mL		Appendix E, odds ratio	total coliforms.
have little	with somatic	Enterococci qPCR		for association	
point-source	coliphage data	GM=65 CCE/100mL		between detectable F+	
fecal pollution,	(Appendix E)			coliphage and diarrhea	
Mission Bay,				OR (95% CI = 1.04	
CA				(0.50 to 2.15), p=0.91	
	Illness rate among	F+ coliphage:			
Cohort study,	swimmers:	Detected in 16/141			
14-day	HCGI-1 Illness rate	samples(GM		Multivariate logistic	
telephone	among non-	0.2/100mL		models of illness that	
follow-up	swimmers: 2.3%	max: 0.78/100mL)		considered F+	
	HCGI-1 Illness rate			coliphage as a	
	among swimmers:			continuous measure:	
	2.9%	Somatic coliphage:		Diarrhea 1.1 (0.97–1.4)	
		Detected in 96/141		HCGI-1 1.3 (1.1–1.5)	
		samples		HCGI-2 1.4 (1.1–1.8)	
		GM 0.6 /100mL		Nausea 1.3 (1.2–1.6)	
		Max: 36.6 /100mL)		Cramps 1.0 (0.83–1.3)	
				Vomiting 1.2 (0.96–1.5)	
		Adenovirus: detected			
		in 1/151 samples			
		Norovirus: detected in			
		0/151 samples			

		Health risk findings :	
Study, setting, study	Water sampling, analysis, and	rates of illness, FIB as predictors of	Coliphage as a predictor of gastrointestinal
design, participants	measured microbe concentration	illness	illness
Wade et al., 2010 [6]	Sampling	Rate of GI illness	Coliphage as an ordinal measure, vs. non-
	3 transects and 2 depths/beach, 3	Non-swimmers: 5.6 cases per 100	swimmers
Setting	times/day	Swimmers: when enterococci (culture)	F+ coliphage spot assay
NEEAR study Marine		was < 2.32 CFU/100mL, 7.39 cases per	Concentration: 0.1 – 0.7/100mL:
beaches affected by	Bacteria concentrations per 100mL	100 swimmers: when enterococci was	Odds ratio 1.52 (0.98, 2.36)
POTWs	Enterococci measured by culture ;	>22.9 CFU/100mL, rate 11.46 per 100	Conc. F+ 0.7 – 2.4/100mL:
2005: Mississippi,	qPCR		Odds ratio 1.70 (1.12 – 2.57)
2007: Alabama, Rhode	Alabama: GM=21 CFU;260 CCE _{∆∆}	Enterococci culture results as	
Island	Rhode Island: GM= 3.6 CFU; 160	predictors of illness	F+ coliphage detection (CLAT) as
	CCE	Rates of illness among swimmers	predictor of illness measure, vs. non-
Design		statistically equivalent whether	swimmer
Cohort study. Summary	Coliphage testing methods	enterococci culture above vs below	Not detected: 1.18 (0.74-1.88)
limited to	1) CLAT presence/absence for F+	35CFU/100mL. Rates of GI illness and,	Detected: 1.80 (1.22, 2.66)
the two beaches at	RNA,	diarrhea significantly greater among	F+ DNA CLAT not detected: 1.11 (0.6493)
which in 2007	F+ DNA coliphages	swimmers when enterococci >35	F+ DNA CLAT detected: 1.69 (1.16 – 2.47)
coliphage testing was	2) Method 1601 spot test (F+)	CFU/100mL compared to rate among	
conducted		non-swimmers. The odds of GI illness is	F+ coliphage spot assay a s a continuous
	Coliphage concentration	not statistically increased for a log ₁₀	variable among swimmers
Immersion to waist or	Fairhope Beach: Coliphage	increase in enterococci culture results.	Adjusted odds ratio for illness among
higher ("swimming	detectable in 56% of samples by 24-	qPCR results as a continuous	swimmers for a 1-log increase in F+ RNA
exposure"): 1,903	hour SPOT assay	variables, as predictors of illness	coliphage: 1.15(0.69-1.92)
	4%, 14% detectable for F+ RNA, F+	Log ₁₀ qPCR results for Enterococcus,	
No immersion of body:	DNA by CLAT	Bacteroidales, Bacteroides, and	Findings: CLAT assay results, as a
3,802		Clostridium were significant predictors	continuous variable among swimmers
	Goddard Beach: Coliphage	of GI illness, though for some of these	Adjusted odds ratio for illness among
Based on data in Table	detectable in 65% of samples by 24-	analyses, the association was	swimmers for a 1-log increase in F+ RNA
5:	hour SPOT	dependent on the method of	coliphage: 1.55 (0.9 – 2.66)
Non-swimmer=1,776		calculating qPCR results.	
Swimmer=1,335	8%, 9% detectable for F+ RNA, F+		Adjusted odds ratio for illness among
	DNA by CLAT		swimmers for a 1-log increase in F+ DNA
			coliphage: 1.61 (0.86 – 3.0)

Study, setting, study design, participants	Water sampling, analysis, and measured microbe concentration	Health risk findings : rates of illness, FIB as predictors of illness	Coliphage as a predictor of gastrointestinal illness
Abdelzaher, et al. 2011			
[43]			
			No statistically
Setting	Sampling	GI illness rate difference between bathers	significant associations
Subtropical, non-point-	Composite of 30-60 bather-collected	and non-bathers: 2 per 100	between any measure
source marine beach in	samples per 3.5 hours, as well as		of WQ and the bather-
Southern FL	"investigator-collected" composite	Somatic coliphage detected in 3 of the 5 (of	non-bather illness rate
	samples.	15 total) days with biggest differences in GI	difference
Design		illness rates in bather vs. non-bather.	
Randomized controlled			
exposure to head	Coliphage analysis		
immersion	Single layer agar method for somatic		
	(referred to as F-coliphages in the	No statistically significant associations	
Participants	paper and supplement) and F+	between coliphages and the difference in	
Bathers: 15 min in water	coliphages	illness rates between bathers non-bathers.	
with at least 3 head		This may be because the number of	
immersions	Coliphage concentrations	observations (study days) was only 15.	
N=652	F+ coliphage not detected in any		
	sample (<0.3 PFU/100mL)		
Non-bathers: 15 minutes			
on the beach	Enterococci: <2-109 CFU/100mL		
N=651			

Author, Year,	Participants:	Water sampling		
Setting, study	Water, non-water	and microbe		Findings: other WQ
design	Illness rate	concentrations	Findings	measures and health
Dorevitch, 2015			Association with GI illness	No association between
[45]	Participants	Water sampling	during dry weather at waters	other water quality
Setting: Chicago	4,929 water	Every two hours during	not dominated by	measures and illness.
area surface	recreators free of	water recreation.	wastewater effluent only.	
waters	baseline GI		Somatic coliphage: OR 1.01	
(freshwater)	symptoms with	Coliphage test method	(1.00, 1.02) and	
including the	health follow-up	EPA Method 1602	F+ coliphage: 1.05 (0.96,	
heavily polluted	and coliphage data		1.14) (borderline statistical	
Chicago River		Median concentration	significance); at those waters	
system; rivers,	Illness rate	(per 100mL)	during wet weather: No	
small lakes, Lake	4.30/100 at	Enterococci: 126.6 CFU	association.	
Michigan	effluent-dominated	Somatic coliphage 31.7		
	waters	PFU	At effluent-dominated	
Design	4.25/100 at general	F+ coliphage: 1.7 PFU	waters: No association	
Cohort	use waters	Giardia cysts: 0.008	between illness rate and	
study of			either F+ or somatic	
incidental contact			coliphage.	
water recreation;				

Information in the above detailed tables above is not entirely in agreement with that contained in Table 4 of the EPA's review. While these are not likely to have substantive impacts of evaluations of coliphages as water quality indicators, for completeness they are summarized below.

Study	EPA review – Table 4	A more complete statement
Wiedenmann 2006 [41]	Column 3: "Significantly increased RR of gastroenteritis for bathing in waters with somatic coliphage levels above the NOAEL (10 PFU per 100 mL) versus nonbathing."	Using the definition that is closest to the NEEAR GI illness definition (three diarrheal stools/24 hours) - UK_GI - the NOAEL is 150PFU/100mL
Colford 2007 [42]	Column 1: Sample size=8,000	4,234 with complete telephone data with somatic coliphage data (Appendix E)
	Supports coliphages as water quality indicator? (Column 4): Yes, F- specific coliphage	For completeness, Column 4 should read: Yes, F-specific coliphage No, somatic coliphage
Wade 2010 [6]	Sample size =6,350	The number 6,350 was indeed reported in the publication. However, data from relatively few of those participants were included in the coliphage analysis. Number of swimmers included in the analysis of coliphage data: 1,335 (based on information in Table 5 of the publication).
	Column 4: Yes; F-specific coliphage	Coliphage analyses that used the EPA reference method ("spot") were not associated with GI illness. The comparison group used in the analysis of coliphage data generated by the CLAT method (Column 3 of the Table 4, EPA Coliphage report) was non-swimmers. In EPA analyses of qPCR as predictor of risk among swimmers,
		swimmers exposed to a range of qPCR measures of water quality were analyzed (with qPCR results on a log ₁₀ scale). The use of a similar approach for the CLAT results showed no statistically significant association between GI illness and either log10 F+RNA or F+ DNA coliphages. By contrast, log10 transformed qPCR results were predictive of GI illness among swimmers (with a larger sample size).
Abdelzaher 2011 [43]	Column 4 "Somatic coliphage detection overlaps with highest illness days"	Health data from this study were analyzed very differently than those of the EPA studies. As analyzed, there were only 15 observations (one for each day of the study). Of the five days with the greatest difference in swimmer and non-swimmer illness rates, three had detectable coliphages

	and two did not. It's not clear that this should not be considered support for coliphage (Table 4). Better to note: No support, though study too small to detect weak or moderately strong associations.
Griffith 2015	Consider waiting until the information has been published in the peer-reviewed literature before including it in the review.

Table 3: Areas of incomplete agreement between information in the EPA review Table 4 and the present review of epidemiologic studies of coliphages and water recreation.

Comparison of studies used to develop recreational water quality criteria and in the review of coliphages

In the EPA's epidemiologic study that evaluated coliphages and water recreation health risks, 1,335 water-exposed participants were enrolled for whom coliphage data were available (Table 4) at marine beaches. The table puts this information into the context of the number of water-exposed study participants in EPA's epidemiologic studies conducted in support of prior recreational water criteria development.

	1986 Criteria AWQC [9]		2012 RWQC [10]		
	(for Enterococci, E. coli by cult	ure)	Enterococci by qP	CR	Coliphage
	1986 AWQC, Table 1:		Wade 2010, "Imm	ersion"	Wade 2010 [6]
Number of marine			participants (Table	e 1):	Table 5:
beaches,					Fairhope and
swimmers, other	New York City (3 summers):	9,463	Edgewater (2005)	: 741	Goddard
water recreators	L. Pontchartrain (3 summers):	4,768	Fairhope (2007)	: 823	beaches (2007
	Boston Harbor: (1 summer):	2,049	Goddard (2007): 1,080	only):
	Total:	16,280	Total	2,644	1,335
Number of	Lake Erie (3 summers):	14,784	Wade 2008		None
freshwater	Keystone Lake (2 summers)	<u>14,182</u>	Limited to swimm	ers	
beaches,	Total:	28,966	included in the qP	CR-	
swimmers, other			health risk analysi	S	
water recreators			(Appendix C)		
			Swimmers:	9,327	
Marine +		45,246		11,971	1,335
freshwater					

Table 4: Number of swimmers with health data analyzed in relation to coliphage data in US EPA epidemiologic studies

Viral pathogens as predictors of illness in epidemiologic studies

The third question that this report is meant to answer is, "Is there a relationship between enteric viruses and human health in recreational waters? If so, what is that relationship?" Table 5 summarizes this information. The two studies that were not described previously in this report (Fewtrell, 1992 and Hale, 1999) are summarized in the following section.

Study	Pathogen	Associated with illness?
Fewtrell et al., 1992 [46]	Enterovirus	Yes
Lee et al., 1997 [40]	Enterovirus	Not reported
Van Asperen et al., 1998 [44]	Enterovirus	No
Haile et al., 1999 [47]	Human enteric virus	Borderline significance
Colford et al., 2007 [42]	Adenovirus, norovirus	No

Table 5: Cohort studies of enteric viruses and human health in recreational waters

Fewtrell [46]: White water canoeists were enrolled at two courses: Course A was the same site studied in Lee 1997. At Course A, enterovirus measured by culture was detected in 10/10 sample, with a mean concentration of 198.4 PFU/10L. At Course B, which receives water not impacted by wastewater, enterovirus was not detected in any of the 9 samples. Fecal coliforms and enterococci were present in significantly higher concentration at Course A. Among 378 whitewater canoeists, gastrointestinal symptoms were 2.97 (95% confidence interval 2.01, 4.37) times more common among canoeists at Course A than at Course B. Beyond that descriptive and compelling information, statistical tests of associations between enteric virus concentration and illness risk were not reported.

Haile 1999[47]: At three beaches in Santa Monica Bay, California 3,554 participants were enrolled in a cohort study of symptom incidence following swimming. Rates of gastrointestinal symptoms were not significantly higher on days that enterococci, fecal coliforms, or total coliforms were elevated. Rates of symptoms were higher when viable human enteric virus was present in the water (based on viral culture) than when viruses were absent, but this did not reach statistical significance at a p<0.05 level. The odds of 'highly credible gastrointestinal illness definition 1' were increased (relative to when enteric virus was not detected), with the odds ratio (95% confidence interval) of 1.69 (0.95, 3.01). Based on definition 2 of 'highly credible gastrointestinal illness', the odds ratio was 2.32 (0.91, 5.88).

Conclusions

Based on the studies reviewed, the following answers are provided to the charge questions:

1. Is there a relationship between male specific and/or somatic coliphage with enteric viruses in recreational waters?

As summarized in Table 1, five medium-to-large studies and one small study of coliphages analyzed enteric viral pathogens using culture methods, which identifies infectious or viable viruses. In two of these studies (Skraber, 2004 and Choi 2005), no infectious enteric viruses grew in culture. In two other studies (Moce-Llivina 2005 and Lodder 2010) associations between coliphages and enteric viruses were noted. In one study (Hot 2003) coliphages were not associated with a culturable viral pathogen. These inconsistencies may be due to differences of study settings, virus analysis methods, and fecal pollution sources. A larger number of studies that found no association between coliphages and viral nucleic acids found in water samples (but not necessarily infectious viruses). Taken together, the studies conducted to date provide at best very limited and inconsistent support for an association between coliphages and enteric viruses.

2. Is there a relationship between male specific and/or somatic coliphage with human health in recreational waters? If so, what is that relationship?

As summarized in Table 2, several studies noted statistically significant associations between coliphages and health risk (or suggested associations with 'borderline' statistical significance). Of the four studies that found significant value in coliphage measures as predictors of illness, three also found fecal indicator bacteria to be predictive of illness. One study (Lee, 1997) found coliphage to be a better predictor of health risk than fecal indicator bacteria. However, that study was not conducted in a surface water, but rather at a concrete whitewater slalom course fed partly by wastewater. One study found that fecal indicator bacteria were predictive of illness while coliphage levels were not (van Asperen, 1998). Three studies found that neither fecal indicator bacteria nor coliphages were significant predictors of illness (Von Shirnding, 1992; Abdelzaher, 2011; Dorevitch, 2015). Given the limited number of studies that evaluated coliphages as predictors of health risk and the conflicting findings of those studies, further research is needed before a coliphage-health risk relationship could be characterized.

3. Is there a relationship between enteric viruses and human health in recreational waters? If so, what is that relationship?

As summarized in Table 5, five cohort studies of water recreation have evaluated enteric viruses as predictors of illness. These studies provide little evidence for an association between enteric viruses and illness among water recreators.

4. Do any of these papers link coliphage or viruses originating from wastewater that is discharged by centralized facilities to human health? If so, what is the nature of this link and what are the circumstances characterizing the link?

As summarized in Table 2, several epidemiologic studies were conducted, at least in part, at sites that were thought to be impacted wastewater discharged by centralized facilities. In one study (Lee, 1997) the whitewater course was partly fed by wastewater. In another (Dorevitch, 2015), one groups of study settings were mainly secondary-treated wastewater. These two studies, neither of which included swimmers, generated conflicting results regarding coliphages as a predictor of health risks (Lee found a strong association, Dorevitch found no association at

the effluent-dominated waters). In the study by van Asperen, no association between illness and coliphage was observed in a setting impacted by treated domestic sewage. In another study (Wiedenmann, 2006) some sites were impacted by wastewater or sewer overflows some of the time. However, the data were not analyzed in a way that would allow the evaluation of whether the observed association between coliphages and health risks differed between the wastewater impacted and non-impacted sites. Finally, the NEEAR study marine sites (Wade, 2010) was conducted at beaches that were within 7 miles of wastewater treatment plants. Coliphages were found to be of some value in predicting illness in that study. On the other hand at two beaches that did not receive treated wastewater, coliphages were found to be predictive of illness at one (Colford, 2007) but not at the other (Abdelhazer, 2011). Thus, no consistent linkage exists between coliphages and illness at wastewater impacted beaches (or at nonimpacted beaches).

5. Are there other recreational water studies not referenced by EPA that evaluate each of the relationships above and meet current conventional standards for epidemiological study? Do these studies change the response to the questions above, and if so, how and why? One epidemiologic study (Dorevitch, 2015) was published after the EPA review was released. That study found no predictive value of coliphage at effluent-dominated waters but suggested weak associations between coliphages and illness at other waters during dry weather only. The inclusion of that study does not have a major impact on the overall conclusion that the current epidemiologic literature provides limited and conflicting evidence for coliphages as predictors of health risk.

References

- Hlavsa, M.C., et al., Surveillance for waterborne disease outbreaks and other health events associated with recreational water --- United States, 2007--2008. MMWR Surveill Summ, 2011.
 60(12): p. 1-32.
- 2. Hlavsa, M.C., et al., *Recreational water-associated disease outbreaks--United States, 2009-2010.* MMWR Morb Mortal Wkly Rep, 2014. **63**(1): p. 6-10.
- 3. Yoder, J.S., et al., *Surveillance for waterborne disease and outbreaks associated with recreational water use and other aquatic facility-associated health events--United States, 2005-2006.* MMWR Surveill Summ, 2008. **57**(9): p. 1-29.
- 4. Dorevitch, S., et al., *Health risks of limited-contact water recreation*. Environ Health Perspect, 2012. **120**(2): p. 192-7.
- 5. Wade, T.J., et al., *High sensitivity of children to swimming-associated gastrointestinal illness: results using a rapid assay of recreational water quality.* Epidemiology, 2008. **19**(3): p. 375-83.
- 6. Wade, T.J., et al., *Rapidly measured indicators of recreational water quality and swimmingassociated illness at marine beaches: a prospective cohort study.* Environ Health, 2010. **9**: p. 66.
- 7. Jones, F., et al., *Results of the first pilot-scale controlled cohort epidemiological investigation into possible health effects of bathing in seawater at Langland Bay, Swansea.* J Inst Water Env Management, 1991: p. 91-98.
- 8. Dorevitch, S., et al., *Enteric pathogens in stool samples of Chicago-area water recreators with new-onset gastrointestinal symptoms.* Water Res, 2012. **46**(16): p. 4961-72.
- 9. USEPA. Ambient Water Quality Criteria for Bacteria 1986. 1986 2015]; Available from: <u>http://water.epa.gov/scitech/swguidance/standards/upload/2001_10_12_criteria_ambientwqc_bacteria1986.pdf</u>.
- 10. USEPA. *Recreational Water Quality Criteria*. 2012 [cited 2015; Available from: <u>http://water.epa.gov/scitech/swguidance/standards/criteria/health/recreation/upload/RWQC2</u> 012.pdf.
- 11. USEPA, *Review of coliphages as possible indicators of fecal contamination for ambient water quality 820-R-15-098.* 2015.
- 12. Moce-Llivina, L., F. Lucena, and J. Jofre, *Double-layer plaque assay for quantification of enteroviruses*. Appl Environ Microbiol, 2004. **70**(5): p. 2801-5.
- 13. Lodder, W.J., et al., *Presence of enteric viruses in source waters for drinking water production in The Netherlands*. Appl Environ Microbiol, 2010. **76**(17): p. 5965-71.
- 14. Griffin, D.W., et al., *Detection of viral pathogens by reverse transcriptase PCR and of microbial indicators by standard methods in the canals of the Florida Keys*. Appl Environ Microbiol, 1999. **65**(9): p. 4118-25.
- 15. Jiang, S., R. Noble, and W. Chu, *Human adenoviruses and coliphages in urban runoff-impacted coastal waters of Southern California.* Appl Environ Microbiol, 2001. **67**(1): p. 179-84.
- 16. Hot, D., et al., *Detection of somatic phages, infectious enteroviruses and enterovirus genomes as indicators of human enteric viral pollution in surface water.* Water Res, 2003. **37**(19): p. 4703-10.
- 17. Jiang, S.C. and W. Chu, *PCR detection of pathogenic viruses in southern California urban rivers*. J Appl Microbiol, 2004. **97**(1): p. 17-28.
- 18. Skraber, S., B. Gassilloud, and C. Gantzer, *Comparison of coliforms and coliphages as tools for assessment of viral contamination in river water*. Appl Environ Microbiol, 2004. **70**(6): p. 3644-9.

- Ballester, N.A., J.H. Fontaine, and A.B. Margolin, Occurrence and correlations between coliphages and anthropogenic viruses in the Massachusetts Bay using enrichment and ICC-nPCR. J Water Health, 2005. 3(1): p. 59-68.
- 20. Choi, S. and S.C. Jiang, *Real-time PCR quantification of human adenoviruses in urban rivers indicates genome prevalence but low infectivity.* Appl Environ Microbiol, 2005. **71**(11): p. 7426-33.
- 21. Moce-Llivina, L., F. Lucena, and J. Jofre, *Enteroviruses and bacteriophages in bathing waters*. Appl Environ Microbiol, 2005. **71**(11): p. 6838-44.
- 22. Jiang, S.C., W. Chu, and J.W. He, *Seasonal detection of human viruses and coliphage in Newport Bay, California.* Appl Environ Microbiol, 2007. **73**(20): p. 6468-74.
- Boehm, A.B., et al., *Covariation and photoinactivation of traditional and novel indicator organisms and human viruses at a sewage-impacted marine beach.* Environ Sci Technol, 2009.
 43(21): p. 8046-52.
- 24. Espinosa, A.C., et al., *Comparative study of enteric viruses, coliphages and indicator bacteria for evaluating water quality in a tropical high-altitude system.* Environ Health, 2009. **8**: p. 49.
- 25. Jurzik, L., et al., *Chemical and microbiological parameters as possible indicators for human enteric viruses in surface water.* Int J Hyg Environ Health, 2010. **213**(3): p. 210-6.
- 26. Lodder, W.J. and A.M. de Roda Husman, *Presence of noroviruses and other enteric viruses in sewage and surface waters in The Netherlands.* Appl Environ Microbiol, 2005. **71**(3): p. 1453-61.
- 27. Haramoto, E., K. Yamada, and K. Nishida, *Prevalence of protozoa, viruses, coliphages and indicator bacteria in groundwater and river water in the Kathmandu Valley, Nepal.* Trans R Soc Trop Med Hyg, 2011. **105**(12): p. 711-6.
- 28. Viau, E.J., D. Lee, and A.B. Boehm, *Swimmer risk of gastrointestinal illness from exposure to tropical coastal waters impacted by terrestrial dry-weather runoff.* Environ Sci Technol. **45**(17): p. 7158-65.
- 29. Love, D.C., et al., *Human viruses and viral indicators in marine water at two recreational beaches in Southern California, USA*. J Water Health, 2014. **12**(1): p. 136-50.
- 30. Rezaeinejad, S., et al., *Surveillance of enteric viruses and coliphages in a tropical urban catchment*. Water Res, 2014. **58**: p. 122-31.
- 31. Liang, L., et al., Alternative fecal indicators and their empirical relationships with enteric viruses, Salmonella enterica, and Pseudomonas aeruginosa in surface waters of a tropical urban catchment. Appl Environ Microbiol, 2015. **81**(3): p. 850-60.
- 32. Updyke, E.A., et al., *Human enteric viruses-potential indicators for enhanced monitoring of recreational water quality.* Virol Sin, 2015.
- 33. Allwood, P.B., et al., *Survival of F-specific RNA coliphage, feline calicivirus, and Escherichia coli in water: a comparative study.* Appl Environ Microbiol, 2003. **69**(9): p. 5707-10.
- 34. Kott, Y., *Viruses and bacteriophages.* Sci Total Environ, 1981. **18**: p. 13-23.
- 35. Baggi, F., A. Demarta, and R. Peduzzi, *Persistence of viral pathogens and bacteriophages during sewage treatment: lack of correlation with indicator bacteria.* Res Microbiol, 2001. **152**(8): p. 743-51.
- 36. Betancourt, W.Q. and J.B. Rose, *Microbiological assessment of ambient waters and proposed water sources for restoration of a Florida wetland.* J Water Health, 2005. **3**(2): p. 89-100.
- 37. Westrell, T., et al., *Short- and long-term variations of norovirus concentrations in the Meuse river during a 2-year study period.* Water Res, 2006. **40**(14): p. 2613-20.
- 38. Payment, P. and A. Locas, *Pathogens in water: value and limits of correlation with microbial indicators.* Ground Water, 2011. **49**(1): p. 4-11.
- 39. von Schirnding, Y.E., et al., *Morbidity among bathers exposed to polluted seawater. A prospective epidemiological study.* S Afr Med J, 1992. **81**(11): p. 543-6.

- 40. Lee, J.V., et al., *Bacteriophages are a better indicator of illness rates than bacteria amongst users of a white water course fed by a lowland river* Water Sci Technol 1997. **35**(11–12): p. 165–170.
- Wiedenmann, A., et al., A randomized controlled trial assessing infectious disease risks from bathing in fresh recreational waters in relation to the concentration of Escherichia coli, intestinal enterococci, Clostridium perfringens, and somatic coliphages. Environ Health Perspect, 2006.
 114(2): p. 228-36.
- 42. Colford, J.M., Jr., et al., *Water quality indicators and the risk of illness at beaches with nonpoint sources of fecal contamination*. Epidemiology, 2007. **18**(1): p. 27-35.
- 43. Abdelzaher, A.M., et al., *Daily measures of microbes and human health at a non-point source marine beach.* J Water Health, 2011. **9**(3): p. 443-57.
- 44. van Asperen, I., et al., *Risk of gastroenteritis among triathletes in relation to fecal pollution of freshwaters.* Int J Epidemiol, 1998. **27**: p. 308-315.
- 45. Dorevitch, S., et al., *Water quality as a predictor of gastrointestinal illness following incidental contact water recreation.* Water Res, 2015: p. in press.
- 46. Fewtrell, L., et al., *Health effects of white-water canoeing*. Lancet, 1992. **339**(8809): p. 1587-9.
- 47. Haile, R.W., et al., *The health effects of swimming in ocean water contaminated by storm drain runoff.* Epidemiology, 1999. **10**(4): p. 355-63.